

JEE MAINS GRAND TEST

DURATION: 3 Hours 0 Minutes

DATE: 2025-03-28

IMPORTANT INSTRUCTIONS:

- 1. A seat marked with Reg. No. will be allotted to each student. The student should ensure that he/she occupies the correct seat only. If any student is found to have occupied the seat of another student, both the students shall be removed from the examination and shall have to accept any other penalty imposed upon them.
- The test is of 3 hours duration and this Test Booklet contains 90 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 Marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 300.
- 3. In this Test Paper, each subject will consist of two sections. Section A will consist of 20 questions (all questions are mandatory) and Section B will have 10 questions. Candidates can choose to attempt any 5 questions out of these 10 questions. In case the candidate attempts more than 5 questions, the first 5 attempted questions will be considered for marking.
- 4. Students cannot use log tables, calculators, or any other material in the examination hall.
- 5.

Mathematics Q.No. 1 - 30 Physics Q.No. 31 - 60 Chemistry Q.No. 61 - 90

6. A candidate has to write his/her answer in the **OMR** sheet by darkening the appropriate bubble with the help of **Blue / Black Ball Point Pen** only as the correct answer(s) of the question attempted.

SYLLABUS

Mathematics:Trigonometric Functions, Complex Numbers And Quadratic Equations, Determinants.Physics:Units And Measurement.Chemistry:Some Basic Concepts In Chemistry.

(Math	ematics)		
SECTION A Attempt All 20 questions	A) Statement I is false, Statement II is true	B)	Statement I is true, Statement II is true; Statement II is a correct explanation for
 If z = 1, (z ≠ -1) and z = x + iy, then (z-1/(z+1)) is A) Purely real B) Purely imaginary C) Zero D) Undefined Direction : Each of these questions contains two statements : Statements I (Assertion) and Statement II (Reason). Each of these questions also has four alternative choices, only one of which 	 C) Statement I is true, Statement II is true; Statement II is not a correct explanation for Statement I 3. If z + 4 ≤ 3, then the maxi A) 4 	D) mum v B)	Statement I is true, Statement II is false alue of $ z + 1 $ is 10
is the correct answer you have to select one of the codes (a), (b), (c) and (d) given below. Statement I If $\frac{5z_2}{11z_1}$ is purely imaginary, then $\left \frac{2z_1+3z_2}{2z_1-3z_2}\right = 1.$ Statement II	C) 6 4. If $ z - i \le 2$ and $z_0 = 5 + 3i$ $ iz + z_0 $ is A) 7 C) 13	D) , the m B) D)	0 aximum value of 9 None of these

5. If *p* and *q* are the roots of $x^2 + px + q = 0$. Then **A)** p = 1**B)** p = 1 or 0**C)** p = -2**D)** p = -2 or 0**6.** If (1 - p) is a root of quadratic equation $x^2 + px + (1 - p)$ (-p) = 0, then its roots are A) 0, 1 **B)** -1, 1 **C)** 0, -1 **D)** -1, 2 7. The number of real roots of $3^{2x^2 - 7x + 7} = 9$ is **A)** 0 **B)** 2 **C)** 1 **D)** 4 **8.** If α , β be the roots of the equation $x^2 - px + q = 0$ and $\alpha > 0$, $\beta > 0$, then the value of $\alpha^{1/4} + \beta^{1/4}$ is $\left(p+6\sqrt{q}+4q^{1/4}\,\sqrt{p+2\sqrt{q}}
ight)^k$, where k is equal to **A)** 1 **B**) $\frac{1}{2}$ **C**) $\frac{1}{3}$ **D**) $\frac{1}{4}$ **9.** The roots of the equation $ax^2 + bx + c = 0$, where $a \in R^+$, are two consecutive odd positive integers, then **A)** |b| ≤ 4a **B**) |b| ≥ 4a **C)** |b| = 2a D) None of these 10. y + z x yIf $|z + x - z - x| = k(x + y + z)(x - z)^2$, y z|x+y|then k = A) 2xyz **B)** 1 C) xyz **D**) $x^2v^2z^2$ 11. If -9 is a root of the equation 2 $x \quad 2 \mid = 0,$ $\overline{7}$ 6 xthen the other two roots are **B)** -2, 7 A) 2,7 **C)** 2, -7 **D)** -2, -7 12. If A and B are square matrices of order 3 such that |A| = -1, |B| = 3, then |3AB| =**A)** -9 **B)** -81 **C)** -27 **D)** 81 $| p \quad b \quad c$ 13. If $a \neq p$, $b \neq q$, $c \neq r$ and $\begin{vmatrix} a & q & c \end{vmatrix} = 0$ then the $\begin{vmatrix} a & b & r \end{vmatrix}$ value of $rac{p}{p-a} + rac{q}{q-b} + rac{r}{r-c}$ is equal to A) - 1 **B)** 1 **C)** - 2 **D)** 2 **14.** Let $\omega = -rac{1}{2} + irac{\sqrt{3}}{2}.$ Then the value of the 1 1 determinate $\begin{vmatrix} 1 & -1 - \omega^2 & \omega^2 \end{vmatrix}$ is $1 \omega^2$ ω^4 A) 3ω **B)** 3ω(ω – 1) **C**) _{3ω²} **D)** $3\omega(1 - \omega)$

15. If $B \cdot B^T = I$ where B is non-singular 3 × 3 matrix such that |B| = 1, then det(B - I) is equal to **B)** 0 A) 1 C) -1 D) None of these **16.** If p + q + r = a + b + c = 0, then the determinant paqbrc $pb \mid$ equals $\Delta =$ qcrarbpcqa**A)** 0 **B)** 1 **C)** pa + qb + rc D) None of these 17. lf x + 12xx(x-1)f(x) =(x+1)x $3x(x-1) \quad x(x-1)(x-2) \quad (x+1)x(x-1)$ then f(100) is equal to A) 0 **B)** 1 **D)** -100 **C)** 100 18. The arbitrary constant on which the value of the determinant α^2 1 α $\cos (p-d) a \quad \cos pa \quad \cos (p-d) a$ $\sin\left(p-d
ight)a \quad \sin pa$ $\sin(p-d)a$ does not depend, is **Α)** α **B**) p **C)** d D) a 19. If |A| denotes the value of the determinant of the square matrix A of order 3, the |-2A|=A) -8 | A | **B)** 8 | A | **C)** -2 |A| D) None of these **20.** If $x_1 \neq 0$, $x_2 \neq 0$, $x_3 \neq 0$, then the determinant $x_1+a_1b_1 \qquad a_1b_2$ a_1b_3 $a_2b_1 \qquad x_2+a_2b_2$ a_2b_3 is equal a_3b_2 $x_3+a_3b_3$ a_3b_1 to **A)** $x_1x_2x_3\left(1+\frac{a_1b_1}{x_1}+\frac{a_2b_2}{x_2}+\frac{a_3b_3}{x_3}\right)$ **B)** $-x_1x_2x_3\left(1+\frac{a_1b_1}{x_1}+\frac{a_2b_2}{x_2}+\frac{a_3b_3}{x_3}\right)$ **C)** $x_1 x_2 x_3 \left(1 - \frac{a_1 b_1}{x_1} - \frac{a_2 b_2}{x_2} - \frac{a_3 b_3}{x_2} \right)$ **D)** None of these

SECTION B

This section will have 10 questions. Candidate can choose to attempt any 5 question out of these 10 questions. In case if candidate attempts more than 5 questions, first 5 attempted questions will be evaluated.

21. The value of tan 9° - tan 27° - tan 63° + tan 81° is **22.** If sin $x + \sin^2 x = 1$, then the value of expression $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 1$ is equal to **23.** $\sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8} =$ **24.** If tan α + cot α = 2, then the value of $\tan^n \alpha + \cot^n \alpha$ **25.** If sin $x + \sin^2 x = 1$, then the value of $\cos^{12} x + 3$ $\cos^{10} x + 3\cos^8 x + 3\cos^6 x - 2$ is equal to

26. lf

 $\frac{\cos A}{3} = \frac{\cos B}{4} = \frac{1}{5}, -\frac{\pi}{2} < A < 0, -\frac{\pi}{2} < B < 0,$ then value of 2 sin A + 4 sin B is

27. If the distance of moon from the earth is 360000 km and its diameter subtends an angle of 31' at the eye of the observer, then the diameter of the moon is _____km

28. If
$$\frac{\cos(x-y)}{\cos(x+y)} + \frac{\cos(z+t)}{\cos(z-t)} = 0$$
, then the value of tan *x* tan *y* tan *z* tan *t* is equal to

29. The value of $\cos 52^\circ + \cos 68^\circ + \cos 172^\circ$ is

30. If
$$\cos A = \frac{3}{4}$$
, then $32\sin\left(\frac{A}{2}\right)\sin\left(\frac{5A}{2}\right) =$

(Physics)

Attempt All 20 questions

31. lf	$x=at+bt^2$, where x is $ heta$	the c	listance	e travelled	
by	the body in killometres wh	nile t	is the t	ime in	
se	conds, then the units of b	are	km _	e	
A)	$\operatorname{KIII}/\operatorname{S}$	Р)	1	3 (7)	
C)	km/S ²	יט)	кт —	5-	
	umn-I (Multiples of me	nn-i	Colu	mn-II (Value)	
a) Ki	ilometre	10)	P) 10	¹⁵ papometre	
b) m	illimetre		() 10	¹⁵ picometre	
c) M	ega metre		P) 10	$\frac{3}{2}$ prometre	
d) m	icrometre		R) 10	⁹ nicomotro	
<u>(u)</u>		B)	3-R	picometre	
-, -)	a - S. b - R. c - O. d - R	ס, ום	a - N, I		
33 A	cube has numerically equa	al vol	ume ar	nd surface	
ar	ea. The volume of such a	cube	is		
A)	216 units	B)	1000 L	units	
C)	2000 units	D)	3000 L	units	
34. In	which of the following syst	tems	of unit	, Weber is	
th	e unit of magnetic flux				
A)	CGS	в)	MKS		
C)	SI	D)	None	of these	
35. M	atch List-I with List-II and s	elec	t the co	orrect	
a		iven	Delow		
(a) [)istance between earth	and	stars	1 Microns	
(b)	nter-atomic distance in	and	hid	2 Anastroms	
(c) S	Size of the nucleus			3 Light years	
(d) V	Vavelength of infrared la	aser		4. Fermi	
	5			5. Kilometres	
Codes	 3			L1	
A)	abcd	B)	abo	d	
	5421		324	1 1	
C)	abcd	D)	abo		
	5243		34	1 1	
36. Tł	ne pressure exerted by an	obje	ct on a	given	
su	irface is 2.4 Pa. The equiva	alent	amour	nt of	
pr	essure in CGS unit will be				

A) $0.024 \text{ g cm}^{-1} \text{ s}^2$

C) $24 \text{ g cm}^{-1} \text{ s}^{-2}$

D) $240 \text{ g cm}^{-1} \text{ s}^2$

B) $0.24~{
m g~cm^{-1}~s^{-2}}$

37. Th	ne S.I. unit of force is Newt	on (l	N). It is equivalent
to A)	$\rm kgm s^{-1}$	B)	$\rm kgm^2~s^{-2}$
, C)	kgms ⁻²	, D)	$\mathrm{kgm}^{-1}~\mathrm{s}^{-2}$
, 38. Ar	npere - hour is a unit of	,	0
A)	Quantity of electricity	B)	Strength of electric current
C)	Power	D)	Energy
39 . Oe	ersted is a unit of		
A)	Dip	B)	Magnetic intensity
C)	Magnetic moment	D)	Pole strength
40. Th	ne velocity of a body is 10^2	mn	n / nano second. It
A)	$3.6 imes 10^3~{ m km}~{ m h}^{-1}$	B)	$3.6 imes 10^8~\mathrm{km}~\mathrm{h}^{-1}$
C)	$3.6 imes 10^7~{ m km}~{ m h}^{-1}$	D)	$3.6~{ m km}~{ m h}^{-1}$
41. _{Th}	ne equation $\left(P+rac{a}{V^2} ight)(V)$	/_	b) constant. The
un	hits of a are		
A)	$Dyne \times cm^3$	B)	$Dyne \times cm^{4}$
C)	$Dyne/cm^{3}$	D)	$Dyne/cm^2$
42. He	enry/ohm can be expressed	d in	Oraclearth
A)	Second	в)	Coulomb
C)	Mho	D)	Metre
43. If 1	the unit of length and force	bei	ncreased four
un A)	Increased 4 times	B)	Increased 8 times
C)	Increased 16 times	D)	Decreased 16 times
44. 1e	eV is		
A)	Same as one joule	B)	$1.6 imes 10^{-19}~{ m J}$
C)	1V	D)	$1.6 imes 10^{-19}{ m C}$
45. Co	onvert 100 quintal into nan	ogra	ms (ng)
A)	$10^5 \mathrm{ng}$	B)	$10^{16} \mathrm{ng}$
C)	$10^{17} \mathrm{ng}$	D)	$10^{18} \mathrm{ng}$
46. Th	ne velocity of a particle dep	end	s upon as
v	$= a + bt + ct^2$; if the vel	ocity	r is in m/sec , the
un • \	it of a will be m/soc	D/	m/aaa^2
A)		D)	m/ \sec^2
C)	m^2/\sec	D)	m/\sec^3
47. Ma	atch the following		

Column-IColumn-IIa) Giga1) 10^4 b) micro2) $1/10^{12}$ c) Mega3) 10^9 d) Pico4) 10^{-6}

	5) 10 ⁻¹²		
A)	a - 3; b - 1; c - 4; d - 2, 5	B)	a - 3; b - 4; c - 1; d - 2, 5
C)	a - 2, 5; b - 4; c - 1; d -	D)	a - 3; b - 4; c - 2, 5; d - 1
	3		
48 . 1 <i>k</i>	wWh =		
A)	$1000 \mathrm{W}$	B)	$3.6 imes 10^6~{ m J}$
C)	1000J	D)	3600 J
49. If	u_1 and u_2 are the units se	lecte	ed in two systems
	1 1 40		

of measurement and n_1 and n_2 their numerical values, then

A) $n_1 u_1 = n_2 u_2$ B) $n_1u_1 + n_2u_2 = 0$

C) $n_1n_2 = u_1u_2$

D) $(n_1 + u_1) = (n_2 + u_2)$ 50. The value of a certain physical quantity is

		oontain priyor	our q	
x	$\mu { m g} { imes} { m cm}^3$	lte value in	$mg \times n$	nm ³ is
11	$($ mili second $)^2$		μs^2	2 13
A)	$10^{-3}X$		B)	$10^{-6}\mathrm{X}$
C)	$10^{-9}\mathrm{X}$		D)	none of these

SECTION B

This section will have 10 questions. Candidate can choose to attempt any 5 question out of these 10 questions. In

case if candidate attempts more than 5 questions, first 5 attempted questions will be evaluated.

- 51. If a distance of 4.5 km is to be converted to centimeters, what is the distance in cm?
- 52. If the time taken for an event is 5 minutes, what is it in seconds?
- 53. A length of 3.5 meters is to be measured with an instrument that has an accuracy of 0.01 meters. What is the relative error?
- 54. A student measures a length as 12.3 cm with an instrument having a least count of 0.1 cm . What is the percentage uncertainty in the measurement?
- 55. If the density of a substance is 2 g/cm³, what is it in kg/m^3 ?
- **56.** Convert 9.8×10^3 milliliters (mL) to liters (L).
- 57. If a length is measured as $6.50\pm0.02cm$, what is the relative error?
- 58. The least count of a Vernier caliper is 0.01 cm . If the main scale reading is 2 cm and the Vernier scale reading is 5 divisions, what is the total length measured?
- 59. A velocity of 36 km/h is to be converted to meters per second (m/s). What is the velocity in m/s?
- 60. A rectangular box measures 10 cm × 5 cm × 2 cm. What is its volume in cubic meters?

(Chemistry)

SECTION	A	67. Ad	ccording to Boyle's Law, the onstant temperature is	e pr	essure of a gas at
Attempt All 20 q	uestions	A)	Directly proportional to its volume	B)	Inversely proportional to its volume
 61. The number of protons in an ator A) Mass number B) C) Neutron number D) 62. What is the limiting reactant in the between 2 moles of HCl and 3 mm A) HCl B) C) Neither, they react D) 63. The Lewis structure of Ammonia A) Lone pair of electrons B) on Nitrogen C) Both (A) and (B) D) 64. Ionic bonding occurs due to A) Sharing of electrons B) 	m determines its: Atomic number Valency e reaction holes of MgCO ₃ ? MgCO ₃ None of the above (NH ₃) involves: Three single bonds between N and H Neither (A) nor (B)	C) 68. W ge A) C) 69. W di A) C) 70. Ba A) C)	Independent of its volume hich of the following molect cometry of trigonal planar? CH_4 BF ₃ hich of the following gases ffusion at room temperature CO_2 N ₂ alancing a chemical equation Predicting the products of the reaction Both (A) and (B)	D) uules B) D) has e? B) D) on is B) D)	Directly proportional to its temperature has a VSEPR NH ₃ H ₂ O the highest rate of O ₂ He important for: Determining the relative amounts of reactants and products Neither (A) nor (B)
 C) Attraction between polar D) molecules 65. Which of the following is a homog A) Sugar solution B) C) Granite D) 66. Which of the following is NOT a p A) Density B) 	Covalent bonds between carbon atoms geneous mixture? Air Milk physical property? Chemical reactivity	State super State ionic i In the most	ment I : Lithium and Magn oxide ment II : The ionic radius of radius of Mg ²⁺ light of the above stateme appropriate answer from th	of Li	m do not form ⁺ is larger than choose the uestions given
C) Boiling point D)	Electrical conductivity	A)	Statement I is incorrect but Statement II is correct	B)	Statement I is correct but Statement II is incorrect

C)	Both statement I and Statement II are incorrect	D)	Both Statement I and Statement II are correct	Th
72. In	the combustion of Methan	e(Cl	H_2), what is the	t
со	efficient of Oxygen (O ₂)?	\ -	2//	Ci
A)	1	B)	2	
C)	4	D)	5	81.
, 73. W	hat is the SI unit of densitv	, ?		
A)	g/mL	B)	kg/L	
C)	ka/m ³	D)	J/kg°C	82.
74. W ar	hich of the following states	has	a definite shape	
A)	Solid	B)	Liquid	
C)	Gas	D)	Plasma	
75. In	the reaction $2H_2 + O_2 \rightarrow 2$	2H ₂ (D, how many	83.
m	oles of H ₂ O are produced v	whe	n 3 moles of H ₂	
ar	e reacted?			84.
A)	1 mol	B)	1.5 mol	
C)	2 mol	D)	3 mol	
76. Th su	he average kinetic energy of the stance increases with	of m	olecules in a 	85.
A)	Volume	B)	Pressure	
C)	Temperature	D)	Density	K
77. W	hat is the difference betwe onding?	en i	onic and covalent	
A)	Sharing of electrons in	B)	Transfer of electrons in	
C	both cases	٦١	Ionic bonding only	86.
0)	the same	0)	between oppositely	87.
78. Tł	he property of a substance	to re	esist change in	
te	mperature is called:			40.0
A)	Specific heat capacity	B)	Thermal conductivity	Hov
C)	Melting point	D)	Heat of fusion	eno
79. Er	tropy (S) is a measure of		·	(ato
A)	Disorder or randomness	B)	Energy content	88.
C)	Chemical reactivity	D)	Temperature	
80. W ele	hich of the following eleme ectron affinity?	nts	has the highest	89.
A)	Fluorine	B)	Chlorine	
C)	Bromine	D)	lodine	

SF	С	тι	O	N	в
	<u> </u>		5		-

This section will have 10 questions. Candidate can choose to attempt any 5 question out of these 10 questions. In case if candidate attempts more than 5 questions, first 5 attempted questions will be evaluated.

amount of oxygen needed to completely burn 4.0 g of CH ₄ is g	I
82. When burnt in air, a 12.0 g mixture of carbon and sulphur yields a mixture of CO_2 and SO_2 , in which	
the number of moles of SO_2 is half that of CO_2 .	
The mass of the carbon (in gram) the mixture contains is	
(AI. WI. Of S = 32) 83 12 litre of He and 11 2 litre of Cle are mixed and	
exploded. The volume of H_0 in the mixture is	
84. One litre of milk weighs 1,035 kg. The butter fat is	
4% in volume of milk has density of 875 kg/m ³ . Find the density of fat free skimed milk	
85. Calculate the mass percent (w/w) of sulphuric acid in a solution prepared by dissolving 4 g of sulphur trioxide in a 100 mL sulphuric acid solution containing 80 mass percent (w/w) of H_2SO_4 and	
having a density of 1.96 g/mL (Molecular weight of $H_2SO_4 = 98$ g)	
Take reaction SO ₃ + H ₂ O \rightarrow H ₂ SO ₄	
0 E E I	
 86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87 A particular 100-octape aviation gasoline used 1 contained and the second sec	
86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of $(C_2H_5)_4$ Pb, of density 1.66 gm/cc per litre of	;
 86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of (C₂H₅)₄ Pb, of density 1.66 gm/cc per litre of gasoline. (C₂H₅)₄ Pb is made as follows : 	;
86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 cc of $(C_2H_5)_4$ Pb, of density 1.66 gm/cc per litre of gasoline. $(C_2H_5)_4$ Pb is made as follows : $4C_2H_5CI + 4NaPb \rightarrow (C_2H_5)_4$ Pb + 4NaCI	;
86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of $(C_2H_5)_4$ Pb, of density 1.66 gm/cc per litre of gasoline. $(C_2H_5)_4$ Pb is made as follows : $4C_2H_5CI + 4NaPb \rightarrow (C_2H_5)_4$ Pb + 4NaCl How many gram of C_2H_5CI is needed to make	>
 86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of (C₂H₅)₄ Pb, of density 1.66 gm/cc per litre of gasoline. (C₂H₅)₄ Pb is made as follows : 4C₂H₅Cl + 4NaPb → (C₂H₅)₄ Pb + 4NaCl How many gram of C₂H₅Cl is needed to make enough (C₂H₅)₄ Pb for 10 litre of gasoline 	>
 86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of (C₂H₅)₄ Pb, of density 1.66 gm/cc per litre of gasoline. (C₂H₅)₄ Pb is made as follows : 4C₂H₅Cl + 4NaPb → (C₂H₅)₄ Pb + 4NaCl How many gram of C₂H₅Cl is needed to make enough (C₂H₅)₄ Pb for 10 litre of gasoline (atomic mass of Pb = 206) 88. A 400 mg of iron capsule contains 100 mg of ferrous fumarate (C₄H₂FeO₄). The percentage of 	;
86. A mixture contains 18 g water and 414 g ethanol. The mole fraction of water is 87. A particular 100-octane aviation gasoline used 1 co of $(C_2H_5)_4$ Pb, of density 1.66 gm/cc per litre of gasoline. $(C_2H_5)_4$ Pb is made as follows : $4C_2H_5CI + 4NaPb \rightarrow (C_2H_5)_4$ Pb + 4NaCl How many gram of C_2H_5CI is needed to make enough $(C_2H_5)_4$ Pb for 10 litre of gasoline (atomic mass of Pb = 206) 88. A 400 mg of iron capsule contains 100 mg of ferrous fumarate $(C_4H_2FeO_4)$. The percentage of iron present on it, is approximately% 89. If law of conservation of mass was to hold true, then 18.80 g of BaCl ₂ on reaction with 11.80 g of H ₂ SO ₄ will produce 7.30 g of HCl and BaSO ₄ equal	2

Print