

JEE Advanced Test 1

DURATION: 0 Hours 30 Minutes

DATE: 2025-03-28

SYLLABUS

Trigonometric Functions, Principle Of Mathematical Induction, Binomial Theorem.

Mathematics: **Physics:**

Physical World And Measurements, Motion In A Plane, Laws Of Motion.

Chemistry:

Some Basic Concepts In Chemistry, Structure Of Atom.

(Mathematics)

1. Let $X=\Big\{(x,y)\in\mathbb{Z} imes\mathbb{Z}:rac{x^2}{8}+rac{y^2}{20}<1$ and $y^2<5x\Big\}.$ Three distinct points P, Q and R are randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is **A)** $\frac{71}{220}$ **B)** $\frac{73}{220}$ **D)** $\frac{83}{220}$ **C)** $\frac{79}{220}$ **2.** Let \boldsymbol{Q} be the cube with the set of vertices $ig\{(x_1,x_2,x_3)\in \mathbb{R}^3: x_1,x_2,x_3\in \{0,1\}ig\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0,0,0) and (1,1,1) is in S. For lines ℓ_1 and ℓ_2 , let $d\left(\ell_1,\ell_2
ight)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1,\ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is

A) $\frac{1}{\sqrt{6}}$ B) - $\sqrt{8}$ C) $\frac{1}{\sqrt{3}}$ **D)** $\frac{1}{\sqrt{12}}$ C(0, 3) A(0, 0)

3. Let $\,M=\left(a_{ij}
ight),i,j\in\{1,2,3\}$, be the 3 imes3 matrix such that $a_{ij}=1$ if j+1 is divisible by i, otherwise $a_{ij}=0.$ Then which of the following statements is(are) true?

B) There exists a nonzero column matrix a_2

C) The set
$$\{X \in \mathbb{R}^3 : MX = \mathbf{0}\} \neq \{\mathbf{0}\}$$
, where $\mathbf{0} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$

$$M\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix} = \begin{pmatrix}-a_1\\-a_2\\-a_3\end{pmatrix}$$

D) The matrix $(M-2I)$ is
invertible, where I is the
 3×3 identity matrix

such that

\0/ 4. Let f:[0,1]
ightarrow [0,1] be the function defined by $f(x)=rac{x^3}{3}-x^2+rac{5}{9}x+rac{17}{36}.$ Consider the square region S = [0,1] imes [0,1] . Let $G = \{(x,y) \in S: y > f(x)\}$ be called the green region and

1 1 4 1			
A)	There exists an	B)	There exists an
	$h \in \left[rac{1}{4}, rac{2}{3} ight]$ such that the		$h \in \left[rac{1}{4}, rac{2}{3} ight]$ such that the
	area of the green region		area of the red region
	above the line L_h equals		above the line L_h equals
	the area of the green		the area of the red region
	region below the line L_h		below the line L_h
C)	There exists an	D)	There exists an
	$h \in \left[rac{1}{4}, rac{2}{3} ight]$ such that the		$h \in \left[rac{1}{4}, rac{2}{3} ight]$ such that the
	area of the green region		area of the red region
	above the line L_h equals		above the line L_h equals
	the area of the red region		the area of the green
	below the line L_h		region below the line L_h

5. Let $n\geq 2$ be a natural number and $f:[0,1] o \mathbb{R}$ be the function defined by f(x)=

$$\left\{egin{array}{ll} n(1-2nx) & ext{if } 0 \leq x \leq rac{1}{2n} \ 2n(2nx-1) & ext{if } rac{1}{2n} \leq x \leq rac{3}{4n} \ 4n(1-nx) & ext{if } rac{3}{4n} \leq x \leq rac{1}{n} \ rac{n}{n-1}(nx-1) & ext{if } rac{1}{n} \leq x \leq 1 \end{array}
ight.$$

If n is such that the area of the region bounded by the curves x=0, x=1, y=0 and y=f(x) is 4 , then the maximum value of the function f is 6. Let

$$R = \left\{ egin{pmatrix} a & 3 & b \ c & 2 & d \ 0 & 5 & 0 \end{pmatrix} : a, b, c, d \in \{0, 3, 5, 7, 11, 13, 17, 19\}
ight\}$$

. Then the number of invertible matrices in R is

Consider the following lists:

List-I	List-II	qrx + pry
(I) $\left\{ x \in \left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right] : \cos x + \sin x = 1 \right\}$	(P) has two elements	List-I
(II) $\left\{ x \in \left[-\frac{5\pi}{18}, \frac{5\pi}{18} \right] : \sqrt{3} \tan 3x = 1 \right\}$	(Q) has three elements	(I) If $\frac{q}{r} = 10$, then the system of linear equations has
(III) $\left\{x \in \left[-\frac{6\pi}{5}, \frac{6\pi}{5}\right]: 2\cos(2x) = \sqrt{3}\right\}$	(R) has four elements	(II) If $\frac{p}{r} \neq 100$, then the system of linear
(IV) $\left\{ x \in \left[-\frac{7\pi}{4}, \frac{7\pi}{4} \right] : \sin x - \cos x = 1 \right\}$	(S) has five elements	(III) If $\frac{p}{2} \neq 10$, then the system of linear
	(T) has six elements	equations has
The correct option is:		(IV) If $\frac{p}{2} = 10$, then the system of linear
A) (I) \rightarrow (P); (II) \rightarrow (S); (III) B)	(I) $ ightarrow$ (P); (II) $ ightarrow$ (P); (III)	equations has
ightarrow (P); (IV) $ ightarrow$ (S)	ightarrow (T); (IV) $ ightarrow$ (R)	
C) (I) \rightarrow (Q); (II) \rightarrow (P); (III) D)	(I) $ ightarrow$ (Q); (II) $ ightarrow$ (S); (III)	The correct option is:
ightarrow (T); (IV) $ ightarrow$ (S)	ightarrow (P); (IV) $ ightarrow$ (R)	$(1) \rightarrow (T): (11) \rightarrow (P): (111)$
8. Let p, q, r be nonzero real numbers	s that are, respectively, the	$\mathbf{A}_{\mathbf{J}}(\mathbf{I}) \xrightarrow{\mathcal{J}} (\mathbf{I}), (\mathbf{II}) \xrightarrow{\mathcal{J}} (\mathbf{K}), (\mathbf{III})$

 $10^{\rm th} \ , 100^{\rm th} \$ and $1000^{\rm th} \$ terms of a harmonic progression. Consider the system of linear equations

x + y + z = 110x + 100y + 1000z = 0y + pqz = 0

	List-I	List-II	
	(I) If $\frac{q}{r} = 10$, then the system of linear equations has	(P) $x = 0$, $y = \frac{10}{9}$, $z = -\frac{1}{9}$ as a solution	
	(II) If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q) $x = \frac{10}{9}$, $y = -\frac{1}{9}$, $z = 0$ as a solution	
	(III) If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R) infinitely many solutions	
	(IV) If $\frac{p}{q} = 10$, then the system of linear equations has	(S) no solution	
		(T) at least one solution	
	The correct option is:		
	A) (I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)	B) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) \rightarrow (R)	
	C) (I) \rightarrow (Q); (II) \rightarrow (R); (III) \rightarrow (P); (IV) \rightarrow (R)	D) (I) \rightarrow (T); (II) \rightarrow (S); (III) \rightarrow (P); (IV) \rightarrow (T)	
b 1 <i>i</i>			

(Physics)

9. A container has a base of $50~\mathrm{cm} imes 5~\mathrm{cm}$ and height 50 cm , as shown in the figure. It has two parallel electrically conducting walls each of area $50~\mathrm{cm} imes 50~\mathrm{cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of $250 \text{ cm}^3 \text{ s}^{-1}$. What is the value of the capacitance of the container after 10 seconds? [Given: Permittivity of free space

 $\epsilon_0 = 9 imes 10^{-12} \mathrm{C}^2 \ \mathrm{N}^{-1} \ \mathrm{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

10. An electric dipole is formed by two charges +q and -q located in xy-plane at (0, 2)mm and (0, -2)mm, respectively, as shown in the figure. The electric potential at point P(100,100)mm due to the dipole is $V_0.$ The charges +q and -q are then moved to the points (-1,2)mm and (1,-2)mm, respectively. What is the value of electric potential at P due to the new dipole?

A)	$V_0/4$	B)	$V_0/2$
C)	$V_0/\sqrt{2}$	D)	$3V_0/4$

11. An annular disk of mass M, inner radius a and outer radius b is placed on a horizontal surface with coefficient of friction μ , as shown in the figure. At some time, an impulse $\mathcal{J}_0 \hat{x}$ is applied at a height habove the center of the disk. If $h=h_m$ then the disk rolls without slipping along the x-axis. Which of the following statement(s) is(are) correct?

A) For $\mu \neq 0$ and $a
ightarrow 0, h_m=b/2.$ **C)** For $h = h_m$, the initial angular velocity does not

radius a.

depend on the inner

B) For $\mu \neq 0$ and $a
ightarrow b, h_m = b_.$ **D)** For $\mu = 0$ and h = 0, the wheel always slides without rolling.

12. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta=60^\circ$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{
m min}=30^\circ$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?

- A) The blue light is polarized in the plane of incidence.
- C) The refractive index of the D) The angle of refraction for material of the prism for red light is $\sqrt{2}$.
- B) The angle of the prism is 45° .
 - blue light in air at the exit plane of the prism is 60° .

An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm. An opticate between L and M_2 is 20 cm. A point object S is placed at the mid-point between L and M_2 on the axis. When the distance between L and M_1 is n/7 cm, one of the images coincides with S. The value of n is _____.

14. A thin circular coin of mass 5 gm and radius $4/3~{
m cm}$ is initially in a horizontal xy-plane. The coin is tossed vertically up (+z direction) by applying an impulse of $\sqrt{rac{\pi}{2}} imes 10^{-2}~{
m N}$ -s at a distance

2/3 cm from its center. The coin spins about its diameter and moves along the +z direction. By the time the coin reaches back to its initial position, it completes n rotations. The value of n is [Given: The acceleration due to gravity $g = 10 \text{ m s}^{-2}$]

(Chemistry)

15. In the following reactions P, Q, R and S are the major products.

The transition temperature for α to β phase change is 600 K and $C_{p,\beta} - C_{p,\alpha} = 1 \text{ J mol}^{-1} \text{ K}^{-1}$. Asso $(C_{p,\beta} - C_{p,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{p,\alpha}$ and $C_{p,\beta}$ are heat capacitor of α and β phases, respectively.

Print