

SECTION NAME

Sample Maths

DURATION: 0 Hours 30 Minutes DATE: 2025-03-28

SYLLABUS

Mathematics: Relations And Functions, Matrices.

(Mathematics)

- **1.** Let L denotes the set of all straight lines in a plane. Let a relation R be defined by α R $\beta \Leftrightarrow \alpha \perp \beta$, α , $\beta \in L$. Then R is
 - A) reflexive
- B) symmetric
- C) transitive
- D) None of these
- 2. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R(u, v), if and only if xv = yu. Then, R is
 - A) Reflexive
- B) Symmetric
- C) Transitive
- D) An equivalence relation
- **3.** The relation R defined on a set A is anti symmetric if $(a, b) \in R \Rightarrow (b, a) \in R$ for
 - A) Every $(a, b) \in R$
- **B)** No $(a, b) \in R$
- C) No (a, b), $a \neq b$, $\in R$
- D) None of these
- **4.** Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then R is
 - A) Reflexive
- B) Symmetric
- C) Anti-symmetric
- D) Transitive
- 5. Let R be a relation on a set A such that R = R⁻¹, then R is
 - A) Reflexive
- B) Symmetric
- C) Transitive
- D) None of these
- **6.** $f(x) = x + \sqrt{x^2}$ is a function from $\mathsf{R} \to \mathsf{R}$, then $\mathsf{f}(\mathsf{x})$ is
 - A) injective
- B) surjective
- C) bijective
- D) none of these
- **7.** Let $f: (-1, 1) \to B$ be a function defined by $f(x) = \tan^{-1} \frac{2x}{1-x^2}$, then f is both one-one and onto, when B is in the interval
 - **A)** $(0, \frac{\pi}{2})$
- **B)** $[0, \frac{\pi}{2})$

- C) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- D) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- **8.** Let $f: \mathbb{R} o A = \left\{y: 0 \leq y < rac{\pi}{2}
 ight\}$ be a

function such that $f(x) = \tan^{-1}(x^2 + x + k)$, where k is a constant, The minimum value of k for which f is an onto function, is

A) 1

B) 0

C) $\frac{1}{4}$

- D) None of these
- **9.** Consider two functions f: R \to R and g: R \to R defined as f(x) = x^2 and $g(x) = 2 + x^{\frac{1}{2}}$. Which of the following statements is correct?
 - A) fog(x) = gof(x)
- B) fog(x) gof(x) = g(x)
- **C)** fog is an invertible function
- **D)** gof is an invertible function
- **10.** A function f from the set of natural numbers to integers defined by

$$f(n) = \left\{ egin{aligned} rac{n-1}{2}, ext{ when } n ext{ is odd} \ -rac{n}{2}, ext{ when } n ext{ is even} \end{aligned}
ight.$$

- **A)** Neither one-one nor onto
- B) One-one but not onto
- C) Onto but not one-one
- D) One-one and onto both
- **11.** Let $f(x) = rac{ax+b}{cx+d}$. Then fof(x) = x provided that
 - A) d = -a
- \mathbf{B}) d = a
- **C)** a = b = c = d = 1
- **D)** a = b = 1
- **12.** Consider a binary operation * on N defined as a * b = $a^3 + b^3$. Choose the correct answer.
 - **A)** Is * both associative and commutative?
- B) Is * commutative but not associative?
- **C)** Is * associative but not commutative?
- **D)** Is * neither commutative nor associative?
- **13.** If f(x) = ax + b and g(x) = cx + d, then f(g(x)) = g(f(x)) is equivalent to

- A) f(a) = g(c)
- **B)** f(b) = g(b)
- **C)** f(d) = g(b)
- **D)** f(c) = g(a)
- **14.** For $x\in\mathbb{R}$, two real valued functions f(x) and g(x) are such that, $g(x)=\sqrt{x}+1$ and $fog(x)=x+3-\sqrt{x}$. Then f(0) is equal to
 - **A**) 1

B) 5

C) 0

- **D)** -3
- **15.** If $f(x) = 8x^3$ and $g(x) = x^{1/3}$, then
 - **A)** fog(x) = 2x **B)** fog = 8x
 - **C)** $qof(x) = 2x^{1/3}$
- **D)** $qof(x) = x^{1/3}$
- **16.** For what values of x and y are the following

matrices equal
$$A=egin{bmatrix} 2x+1&3y\\0&y^2-5y \end{bmatrix}$$
, $B=egin{bmatrix} x+3&y^2+2\\0&-6 \end{bmatrix}$

A) 2.3

B) 3, 4

C) 2, 2

D) 3, 3

17.

Column - I (Equal matrices)	Column -II (Values of x, y, z)		
$\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$	1. x = 2. y = 4, z = 0		
$\begin{bmatrix} \mathbf{B}. \\ \begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$	2. x = 2, y = 4, z = 3		

Sample Maths

$\begin{bmatrix} C. \\ x+y+z \\ x+z \\ y+z \end{bmatrix}$	$igg = egin{bmatrix} 9 \ 5 \ 7 \end{bmatrix}$	3. x = 1, y =	4, z =
4.			_

A)	Α	В	C B)	Α	В	С		
	1	2	3	3	2	1		
C)	Α	В	C P)	Α	В	С		
	2	1	3	3	1	2		
Consider the metrices A. D. and C. defined as								

18. Consider the matrices A, B, and C defined as follows:

$$A = \begin{bmatrix} 2 & -1 & 5 \\ -6 & 3 & -2 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 \\ 2 & -1 \\ 4 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} -20 & -8 \\ 6 & -9 \end{bmatrix}$$

If P = AB + C, then P is a/an

- A) identity matrix
- B) scalar matrix
- C) symmetric matrix
- **D)** skew-symmetric matrix
- **19.** A 2 × 2 matrix A = $[a_{ij}]$, whose elements are given

by
$$a_{ij}=rac{i}{j},$$
 is

- A) $\begin{bmatrix} 1 & 1/2 \\ 2 & 1 \end{bmatrix}$
- **B)** $\begin{bmatrix} 1 & 2 \\ 1/2 & 1 \end{bmatrix}$
- C) $\begin{bmatrix} 1/2 & 1 \\ 2 & 1 \end{bmatrix}$
- **D)** $\begin{bmatrix} 1/2 & 1 \\ 1 & 2 \end{bmatrix}$

20. If a matrix has 8 elements, then which of the following will not be a possible order of the matrix?

- A) 1×8
- B) 2×4
- c) 4×2
- D) 4×4