28/03/2025, 14:06 Chemistry Test

SECTION NAME

Chemistry Test

DURATION: 0 Hours 30 Minutes DATE: 2025-03-28

SYLLABUS

Chemistry: Solu	tions.
-----------------	--------

Chemistry:		Solutions.			
(Chemistry)					
When mercuric iodide is a solution of potassium iodi	•	C) 1.69 \mathrm{M}	D) 1.5 \mathrm{M}		
A) Freezing point is raiseC) Freezing point does r	ed B) Freezing point is lowered D) Boiling point does not	7. The vapour pressure of a solvent decreased by 10mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the			
change 2. Which has the maximum A) 6 g urea solution in 1 g H ₂ O			blvent, if decrease in the be 20 mm of mercury? B) 0.6 D) 0.2		
C) 6 g sodium chloride in 100 g H₂O3. 2.56 g of sulphur in 100 g	point	8. Which of the following units is used to express the concentration of a solution in parts per million (ppm)?			
freezing point of 0.010°, $K_f = 0.1^{\circ} \text{ (molal)}^{-1}$. Hence, atomicity of sulphur in CS_2 is		A) g/L C) g/kg	B) mol/LD) mg/L		
A) 2 C) 6	B) 4 D) 8	9. If a solution of molarity \left(\mathrm{M}_1\right) is diluted by the addition of a solvent, its volume changes from \mathrm{V}_1 to V_2. The molarity			
 4. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass = 60 g mol⁻¹) in the same solvent. If the densities of both the 		\left(M_2\right) of the equation M_1 V_1=M 1.2 is diluted to make	\left(M_2\right) of the new solution is given by the equation M_1 V_1=M_2 V_2. A solution of molarity 1.2 is diluted to make a new solution whose		
solutions are assumed to molar mass of the substa A) 90.0 g mol ⁻¹		\mathrm{~L}. The initi A) 1.80 \mathrm{~L}	molarity is 0.1 \mathrm{M} and volume is 1 \mathrm{~L}. The initial volume of the solution is A) 1.80 \mathrm{~L} B) 1.08 \mathrm{~L}		
 C) 105.0 g mol⁻¹ 5. The molarity of a solution 	D) 210.0 g mol ⁻¹ obtained by mixing 800	, ,	C) 0.80 \mathrm{~L}D) 0.08 \mathrm{~L}10. 0.33 g of NaOH is added in water to make a 6 L		

A) 2.17 \mathrm{M}

A) 0.8 M

C) 0.4 M

mL of 0.5 M HCl with 200 mL of 1 M HCl will be

6. The density of \mathrm{KCl} solution labelled as 9

 $\mbox{$\mbox{$\mbox{$}$} \mbox{$\mbox{$}$} \mb$

 $\mathrm{mathrm}^{-mL}^{-1}$. The molarity of the solution is

B) 0.6 M

D) 0.2 M

B) 2.5 \mathrm{M}

solution at 277 K. The concentration of NaOH,

11. Which of the following factors does NOT affect the

solubility of a solid solute in a liquid solvent?

B) 5.5×10^{-5}

D) 8.5×10^{-4}

B) Pressure

when expressed in ppm is

A) 3.3 × 10⁻⁵

C) 6.3×10^{-4}

A) Temperature

- C) Nature of solute and solvent
- D) Volume of the solvent
- 12. The solution of sugar in water contains
 - A) Free atoms
- B) Free ions
- C) Free molecules
- D) Free atom and molecules
- **13.** The solubility of a gas in a liquid with increasing pressure, according to Henry's law.
 - A) Increases
- B) Decreases
- C) Remains constant
- D) Becomes unpredictable
- 14. The solubility of most solid solutes in water tends to increase with:
 - A) Increase in temperature B) Decrease in
- temperature
 - C) Increase in pressure
- D) Decrease in pressure
- 15. Henry's law constant for the solubility of methane in benzene at 25^{\circ} \mathrm{C} is 4.27 \times 10^5 \mathrm{~mm} \mathrm{Hg}. The mole fraction of methane in benzene is 1.5 \times 10^{-3} when the pressure is
 - **A)** 42.7 \mathrm{~mm} \mathrm{Hq}
- **B)** 64.05 \mathrm{~mm} \mathrm{Hg}
- C) 427.0 \mathrm{~mm} \mathrm{Hg}
- **D)** 640.5 \mathrm{~mm} \mathrm{Hg}
- 16. Which of the following is a colligative property?
 - A) Density
- B) Boiling point elevation
- C) Viscosity
- **D)** Surface tension

Chemistry Test

- 17. The vapour pressure of pure benzene at 50^{\{\circ\}} \mathrm{C} is 268 torr. How many mol of nonvolatile solute per mol of benzene is required to prepare a solution of benzene having a vapour pressure of 167 torr at 50^{\circ} \mathrm{C}?
 - **A)** 0.377

B) 0.605

C) 0.623

- **D)** 0.0395
- 18. The vapour pressure of water is 12.3 kPa at 300 K. What will be the vapour pressure of 1 molal solution of a non-volatile solute in it?
 - A) 24.16 kPa
- B) 1.208 kPa
- C) 2.416 kPa
- **D)** 12.08 kPa
- 19. If \mathrm{P} {\mathrm{A}}^{\mathrm{0}} is the vapour pressure of a pure liquid \mathrm{A} and the mole fraction of \mathrm{A} in the mixture of two liquids A and B is x, the partial vapour pressure of A is:
 - **A)** (1-x) P A⁰
- B) \mathrm{x} $\mathrm{P}_{\mathrm{A}}^{\mathrm{A}}^{0}$
- **C)** \frac{x}{(1-x)} P_A^0
- **D)** \frac{(1-x)}{x} P_A^0
- 20. 60 \mathrm{gm} of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P_0, the vapour pressure of solution is
 - **A)** 0.10 \mathrm{P}_{\circ}
- **B)** 1.10 \mathrm{P} {\circ}
- **C)** 0.90{P}_{\circ}
- **D)** 0.99 \mathrm{P}_{\circ}